Science News

Kiel research team develops energy-efficient sensors for extremely low frequencies.

Electrical signals measurements such as the ECG (electrocardiogram) can show how the human brain or heart works. Next to electrical signals magnetic signals also reveal something about the activity of these organs. They could be measured with little effort and without skin contact. But the especially weak signals require highly sensitive sensors. Scientists from the Collaboraive research Center 1261 "Magnetoelectric Sensors" at Kiel University have now developed a new concept for cantilever sensors, with the future aim of measuring these low frequencies of heart and brain activity. The extremely small, energy-efficient sensors are particularly well-suited for medical applications or mobile microelectronics. This is made possible by the use of electrets. Such material is permanently electrically charged, and is also used in microphones for hearing aids or mobile phones. The research team presented its sensor concept in a special edition of the renowned journal Nano Energy.

Full CAU press release: https://www.uni-kiel.de/en/university/details/news/280-sensoren/ 

 

From 19-21 August 2019, the first summer school of the CRC took place at the Wissenschaftszentrum Kiel und the Faculty of Engineering. About 30 doctoral candidates and external speakers from Kiel, Germany as far as Moscow attended the interdisciplinary event with the title “Magnetic sensing and applications in medicine and industry – state of the art and new prospects”. It contributed to establish new contacts as well as enhance existing collaborations that, for example, started at some of the research stays of many CRC-members. 

Invited speakers from science and industry presented their work on the development and the application of sensors. The discussed topics included sensor concepts, fabrication, characterization, modeling, benchmarking, Sensor array building and design, measurement electronics, signal processing, Forward/inverse problems and sensor fusion and medical diagnostics. The participants presented their work as a poster or in a short talk. At the second day, the participants could attend one of three soft skills courses on time management, intercultural competence or presentation techniques. An interactive talk on Public Outreach enabled them to present their own research project in a comprehensible way for non-scientists.

On the third day, the participants could visit several laboratories like Kiel Nanolab or the magnetically shielded room as facilities of the Departments of Materials Science and Electrical Engineering. The Lab Visits at the Faculty of Engineering should provide practical insights into methods and instruments used in Kiel. At the end of the conference Professor Eckhard Quandt, spokesperson of the CRC, awarded a prize for the best poster to Renato Huber from the Leibniz Institute for Solid State and Materials Research Dresden.  

4th Euro Intelligent Materials 2019

After the successful conferences in 2013, 2015 and 2017 the 4th European Symposium on Intelligent Materials will bring together experts in the field of intelligent materials to present and discuss recent developments and detect future trends. A focus of the conference is the interdisciplinary exchange between scientists from materials science, physics, chemistry and biology. Therefore, the European Symposium on Intelligent Materials 2019 is an excellent forum for discussions with international key researchers. It has the aim to stimulate new collaborations for developing novel intelligent material systems and characterizing their functionality, from molecular mechanisms to applications.
The CRC 1261 ist again closely cooperating with the conference and contributions related to the CRC's research spectrum are included in the programme

more information

With a joint fellowship programme the American Ceramic Society, the Pennsylvania State University (Penn State) and the Kiel University (CAU) want to support the international exchange of doctoral researchers. The programme „International Research Experience for Students“ is funded by the American National Science Foundation (NSF) with 500,000 dollars. It enables young scientists from the USA to complete a six-month research stay in Kiel. From the winter semester 2019/20 onwards, they will be able to attend lectures at the Faculty of Engineering and get actively involved in its research work. The subject of the three-year programme is based around three of Kiel University's major research networks, which are working at the interface between engineering and medicine on sensors for biomagnetic fields (Collaborative Research Centre (CRC) 1261 "Magnetoelectric Sensors: From Composite Materials to Biomagnetic Diganostics"), on new materials to treat brain disorders (Research Training Group 2154 "Materials for Brain") and on the implementation of the information processing in nervous systems into hardware electronics.(Research Group 2093 "Memristive devices for neuronal systems").

The aim of the programme IRES is to support first-rate young researchers at the CAU and American universities in their career development: Programme participants, known as PACK fellows (Penn State – American Ceramic Society – University of Kiel), will have the opportunity of a training in an international setting and building long-term networks. The programme focuses on their exchange with scientist of the CAU and Penn State in the fields of magnetoelectric composite materials, biomagnetic sensors, imaging procedures to display brain activities, biomaterials, medical signal processing and neuromorphic components. The American Ceramic Society is administering the programme.

"Bringing young committed researchers together at international level and establishing networks for them is an important component of our support for young researchers," stressed CRC spokesperson Professor Eckhard Quandt. "This cooperation also demonstrates Kiel University's research strength and international visibility in the emerging field of biomagnetic field sensing. Through this project, we hope to establish the foundations for further German-American research partnerships."

Full CAU press release: https://www.uni-kiel.de/en/details/news/pack0/

 

The CRC1261’s graduate student program “Integrated Research Training Group” IRTG promotes young scientists to present their research at international conferences. To do so, project A6 member and electron microscopist Niklas Wolff was granted the opportunity to visit the 19th International Microscopy Congress IMC19 held in Sydney from 9-14th September. Niklas presented his research on the micro- and the atomic structure of multilayer systems which are investigated for potential application as high-temperature stable magnetostrictive phase for biomagnetic sensors.

In the future, highly-sensitive sensors could be able to detect magnetic signals from the body in order to draw conclusions on heart or brain functions. In contrast with established electrical measurement techniques, they would achieve contactless measurement, i.e. without direct skin contact. At present, such measurements are still associated with considerable expense and effort. This is because the sensors must be cooled dramatically, or shielded against other magnetic fields. Now, researchers at Kiel University built an important basis for biomagnetic diagnostics. In the Collaborative Research Center (CRC) 1261 "Magnetoelectric Sensors: From Composite Materials to Biomagnetic Diagnostics", they are researching the development of magnetic field sensors, which in the long-term - with better spatial resolution - could be easily put to use in medical practice. The interdisciplinary research team developed a magnetic field sensor system that not only includes the detection of a magnetic signal, but also its processing. The researchers presented their results in the journal Scientific Reports.

Full press release can be found at: http://www.uni-kiel.de/pressemeldungen

Our new phase noise analyzer FSWP from Rohde & Schwarz has just arrived. With this measurement device the phase noise (and also the amplitude noise) of both one-port and two-port devices under test (DUT) can be measured. One-port measurements are particularly necessary for the noise characterization of the oscillators used for the excitation of our sensors. However, the main feature of this device is the additional radio frequency (RF) source for so-called additive phase noise measurements, e.g. two-port measurements. Thus, we are now able to comprehensively analyze our new surface acoustic wave (SAW) magnetic field sensors [Kit 2018] regarding their noise behaviour. Last but not least the FSWP greatly supports the development of low-noise sensor electronics.

 

[Kit 2018] A. Kittmann, P. Durdaut, S. Zabel, J. Reermann, J. Schmalz, B. Spetzler, D. Meyners, N. X. Sun, J. McCord, M. Gerken, G. Schmidt, M. Höft, R. Knöchel, F. Faupel, and E. Quandt: Wide Band Low Noise Love Wave Magnetic Field Sensor System; Scientific Reports, vol. 8, no. 278, January 2018; http://dx.doi.org/10.1038/s41598-017-18441-4

A highlight, especially for the team of the projects B2 and B6 of the CRC 1261, was the magnetic measurement of nerve signals with a 304 SQUID vector magnetometer at the PTB in Berlin. For further development and also for optimization of our uncooled magnetoelectric (ME) sensors, a better understanding of spectral power distribution and signal strength of nerve signals is of particular interest. Since the magnetic field of human nerve pulses is quite low, only signal amplitudes in the fT range from the deep nerve are measurable. The project B6 intensively prepared these measurements, since an earlier attempt at measuring the signals had completely failed. Finally, Christin Bald and Eric Elzenheimer succeeded in measuring nerve signals magnetically, which also fits to the current electrical gold standard (electroneurography). Signal amplitudes were subject dependent and ranged from 17 fT to 60 fT in a frequency range from 100 Hz to 1 kHz. The required averaging time was in the range of minutes, while for current ME sensors significantly longer averaging times are expected to be necessary.

 

Contact

sfb1261@tf.uni-kiel.de

Chairman:

Prof. Dr. Eckhard Quandt

Kiel University
Institute for Materials Science

 

Internal server

 

CAU

Christian-Albrechts-Universität zu Kiel (CAU)

Christ.-Albrechts-Platz 4
D-24118 Kiel

UKSH

University Hospital Schleswig-Holstein, Campus Kiel (UKSH)

Arnold-Heller-Straße 3
D-24105 Kiel

ISIT

Fraunhofer Institute for Silicon Technology, Itzehoe (ISIT)

Fraunhoferstrasse 1
D-25524 Itzehoe  

IPN

IPN - Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik an der Universität Kiel

Olshausenstraße 62 
D-24118 Kiel

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
Ok