Project B6

Multimodal Mapping of Nerve Pathology with Magnetoelectric Sensors

The objective of project B6 is the non-invasive mapping of nerve function and dysfunction (pathology) by a combination of magnetoelectric (ME) sensor sampling with ultrasound or magnetic resonance (MR) imaging. In step 1, we will establish the experimental set-up with the measurement and analysis pipeline using a phantom. In step 2, we will adapt these to in vivo conditions (healthy human nerve). Finally, in step 3, we will examine patient cohorts with different types of nerve pathology and assess added value of the novel multimodal nerve mapping in comparison to established electrical nerve conduction studies.


Helmut Laufs
PhD, PD Dr. med.
Lead of project B6, IRTG
Eric Elzenheimer
Doctoral researcher


Role within the Collaborative Research Centre

Close cooperation is planned with the following partners:

 Z1, A3: This project is closely interlinked with the ME sensor projects, especially those that operate in resonance and those where the resonance frequency can be adjusted.
B1: B6 will benefit from B1adapting system front-ends and small sensor arrays to the requirements of B6. In turn, we will communicate test results back to B1 to facilitate the development of suitable measurement systems after transfer of mature sub-systems to Z2.
B2, B6: The project will use the same real-time framework as projects B2 and B6. Thus, all extensions made in either one of the projects will benefit the other and immediately speed up development.
B3: We will share data with project B3 for the advancement of inverse solution techniques.
B5: All patient management and data acquisition will be shared with project B5, via which a neurophysiologist/technician will be employed. Patients will be recruited from the same site (Department of Neurology, UKSH Kiel).
Z2: We will share work with the other projects that are producing or extending phantoms.

Project B6 will participate in the focus group F3 “Biomagnetic Signal Analysis”.

Project-related Publications

E. Elzenheimer, H. Laufs, W. Schulte-Mattler, G. Schmidt, Magnetic Measurement of Electrically Evoked Muscle Responses with Optically Pumped Magnetometers. IEEE Transactions on Neural Systems and Rehabilitation Engineering: a publication of the IEEE Engineering in Medicine and Biology Society, Volume 28, Number 3, Pages 756-765 (2020). DOI: 10.1109/TNSRE.2020.2968148

E. Elzenheimer, H. Laufs, W. Schulte-Mattler, G. Schmidt, Signal Modeling and Simulation of Temporal Dispersion and Conduction Block in Motor Nerves. IEEE Transactions on Biomedical Engineering, Volume 67, Number 7, Pages 2094-2102 (2020). DOI:

J. Reermann, E. Elzenheimer, G. Schmidt, Real-time Biomagnetic Signal Processing for Uncooled Magnetometers in Cardiology. IEEE Sensors Journal, Volume 15, Number 10, Pages 4237-4249 (2019). DOI: 10.1109/JSEN.2019.2893236

E. Elzenheimer, F. Weitkamp, H. Laufs, T. Sander-Thömmes, G. Schmidt, Magnetoneurografie eines elektrisch stimulierten Armnervs. Biosignale Workshop, Erfurt, Germany (2018).

F. Weitkamp, E. Elzenheimer, W. Schulte-Mattler, G. Schmidt, H. Laufs, Multimodal Mapping of Nerve Pathology with a Multichannel Approach. DGKN, Berlin, Germany (2018). DOI:

C. Bald, E. Elzenheimer, J. Reermann, T. Sander-Thömmes, G. Schmidt, Amplitudenverlauf des Herzmagnetfeldes als Funktion des Abstandes. Biosignale Workshop, Erfurt, Germany (2018). 

SFB1261 Microsite

Click here to visit our Microsite with information for students, teachers and the public (German and English version available).

Recent Publications

N. Lukat, R.-M. Friedrich, B. Spetzler, C. Kirchhof, C. Arndt, L. Thormälen, F. Faupel, C. Selhuber-Unkel, Mapping of magnetic nanoparticles and cells using thin film magnetoelectric sensors based on the delta-E effect Sens. Actuators A, 309. 112023, (2020),

A. Kittmann, C. Müller, P. Durdaut, L. Thormählen, V. Schell, F. Niekiel, F. Lofink, D. Meyners, R. Knöchel, M. Höft, J. McCord, E. Quandt, Sensitivity and Noise Analysis of SAW Magnetic Field Sensors with varied Magnetostrictive Layer Thicknesses., Sens. Actuators A, 311, 111998 (2020). doi:

A. Galka, S. Monntaha, M. Siniatchkin, Constrained Expectation Maximisation Algorithm for Estimating ARMA models in State Space Representation, EURASIP Journal on Advances in Signal Processing, Springer Nature, accepted (March 2020).




Prof. Dr. Eckhard Quandt

Kiel University
Institute for Materials Science


Internal server



Christian-Albrechts-Universität zu Kiel (CAU)

Christ.-Albrechts-Platz 4
D-24118 Kiel


University Hospital Schleswig-Holstein, Campus Kiel (UKSH)

Arnold-Heller-Straße 3
D-24105 Kiel


Fraunhofer Institute for Silicon Technology, Itzehoe (ISIT)

Fraunhoferstrasse 1
D-25524 Itzehoe  


IPN - Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik 

Olshausenstraße 62 
D-24118 Kiel

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.