Project A8

Modeling of Magnetoelectric Sensors

The aim of project A8 is a theoretical investigation of the behavior of magnetoelectric (ME) sensors based on piezoelectric and magnetostrictive composite materials. Resonant ME sensors, ME sensors employing the ΔE-effect, ME sensors with segmented electrodes, mechanical and magnetic field concentrator geometries, coupled resonators and sensor arrays will be investigated. For each type of sensor system simulation methods will be implemented in order to calculate the signal strength and the signal-to-noise ratio. Systematic studies of geometry-dependent and material-dependent effects as well as scaling effects will be carried out.



Martina Gerken
Prof. Dr.-Ing.
Lead of projects A8, IRTG
Matthias Krantz
Mesut-Ömür Özden
Doctoral researcher
Julius Schmalz
Doctoral researcher


Role within the Collaborative Research Centre

This project will collaborate closely on the sensor design with the technology groups in research area A as well as with the modeling activities in research area B.

A1: Magnetostrictive material parameters and domain properties are obtained from A1 and calculations of stress distributions in magnetostrictive layers are compared to the experimental results in A1.
A2: Finite element method calculations of mechanical deformations provided to A2.
A3: Close collaboration concerning the design of resonant ME sensors. Material parameters and fabrication restrictions are obtained from A3. Sensor layouts are provided to A3. Experimental and theoretical results are compared to interpret and improve the sensor behavior. Tuning of the sensor frequency and quality factor are investigated jointly.
A4: Close collaboration concerning the design of ΔE-effect ME sensors. Material parameters and fabrication restrictions are obtained from A4. Sensor layouts are provided to A4. Experimental and theoretical results are compared to interpret and improve the sensor behavior.
A5, A6: Finite element method calculations of mechanical deformations provided to A5 and A6.
A7: Sensor designs for electric modulation are provided to A7. A comparison of experimental and theoretical results is employed to enhance the simulations method and provide better predictions.
B1: Noise models developed in B1 will be integrated into the simulation software and SNR values for complex sensor geometries will be provided to B1.
B3: Jointly the effect of non-ideal, i.e., extended sensors with fabrication variations, on the solution of the inverse problem will be investigated.
B7: Together with B7 also effects regarding caused by the sensor geometry will be investigated.  

Exchange on modeling topics with other projects will take place in the focus group F1 “Modeling”. The project will also be active in the focus group F2 “Sensor Concepts” to discuss fabrication possibilities and provide sensor layout suggestions. This project will support the dissemination activities in project SOP and the doctoral researchers will be active in the IRTG.

Project-related Publications

M.-Ö. Özden, M. Gerken, Trade-off between spatial resolution and sensitivity of magnetoelectric magnetic field sensors. International Conference on Electromagnetics in Advanced Applications (ICEAA) 2021

J. Schmalz, M. Krantz, A. Knies, H. Lüder,  M. Gerken, Signal-to-noise ratio enhanced electrode configurations for magnetoelectric cantilever sensorsAIP Advances 10, 075314 (2020).

S. Zuo, J. Schmalz, M.-Ö. Özden, M. Gerken, J. Su, F. Niekiel, F. Lofink, K. Nazarpour, H. Heidari, Ultrasensitive Magnetoelectric Sensing System for pico-Tesla MagnetoMyoGraphy, IEEE Transactions on Biomedical Circuits and Systems, May 2020,

A. Kittmann, P. Durdaut, S. Zabel, J. Reermann, J. Schmalz, B. Spetzler, D. Meyners, N. X. Sun, J. McCord, M. Gerken, G. Schmidt, M. Höft, R. Knöchel, F. Faupel, E. Quandt, Wide Band Low Noise Love Wave Magnetic Field Sensor System. Scientific Reports, vol. 8, no. 278 (2018).

Rasmus B. Holländer, Cai Müller, J. Schmalz, M. Gerken, J. McCord, Magnetic domain walls as broadband spin wave and elastic magnetisation wave emitters. Sci. Rep., 8 13871 (2018). 

J. Schmalz, A. Kittmann, P. Durdaut, B. Spetzler, F. Faupel, M. Höft, E. Quandt, M. Gerken, Comparison of the fundamental and higher order Love waves’ sensitivities in a SAW based magnetic field sensor. SAW Symposium 2018, Dresden (2018)

S. B. Hrkac, C. T. Koops, M. Abes, C. Krywka, M. Müller, M. Burghammer, M. Sztucki, T. Dane, Kaps, Y. K. Mishra,R. Adelung, J. Schmalz, M. Gerken, E. Lage, C. Kirchhof, E. Quandt, O. M. Magnussen, B. M. Murphy, Tunable Strain in Magnetoelectric ZnO Microrod Composite Interfaces. ACS Appl. Mater. Interfaces, 9 (30), pp 25571–25577 (2017). DOI: 10.1021/acsami.6b15598

M. Krantz, M. Gerken and J. Schmalz, Magnetoelectric cantilever theory: Effect of elastic seed and adhesion layers and multi-domain concepts on response of exchange bias multilayer sensors. Euro Intelligent Materials (2017).

J. Schmalz, F. Faupel, M. Gerken, A. Kittmann, E. Quandt, E. Yarar, S. Zabel, Influence of a magnetostrictive layer on the mode shape and wave velocity of Love-wave based SAW-device. Euro Intelligent Materials 2017, Kiel (2017).

J. L. Gugat, M. C. Krantz; J. Schmalz, M. Gerken, Signal-to-Noise Ratio in Cantilever Magnetoelectric Sensors. In IEEE Transactions on Magnetics (2016).

J. L. Gugat, J. Schmalz, M. C. Krantz, M. Gerken, Magnetic Flux Concentration Effects in Cantilever Magnetoelectric Sensors. in IEEE Transactions on Magnetics, vol. 52, no. 5, pp. 1-8 (2016).

SFB1261 Microsite

Click here to visit our Microsite with information for students, teachers and the public (German and English version available).

Recent Publications

A. Kittmann, C. Müller, P. Durdaut, L. Thormählen, V. Schell, F. Niekiel, F. Lofink, D. Meyners, R. Knöchel, M. Höft, J. McCord, E. Quandt, Sensitivity and Noise Analysis of SAW Magnetic Field Sensors with varied Magnetostrictive Layer Thicknesses., Sens. Actuators A, 311, 111998 (2020). doi:

N. Lukat, R.-M. Friedrich, B. Spetzler, C. Kirchhof, C. Arndt, L. Thormälen, F. Faupel, C. Selhuber-Unkel, Mapping of magnetic nanoparticles and cells using thin film magnetoelectric sensors based on the delta-E effect Sens. Actuators A, 309. 112023, (2020),

A. Galka, S. Monntaha, M. Siniatchkin, Constrained Expectation Maximisation Algorithm for Estimating ARMA models in State Space Representation, EURASIP Journal on Advances in Signal Processing, Springer Nature, accepted (March 2020).




Prof. Dr. Gerhard Schmidt

Kiel University
Institute for Electrical Engineering and Information Engineering


Internal server



Christian-Albrechts-Universität zu Kiel (CAU)

Christ.-Albrechts-Platz 4
D-24118 Kiel


University Hospital Schleswig-Holstein, Campus Kiel (UKSH)

Arnold-Heller-Straße 3
D-24105 Kiel


Fraunhofer Institute for Silicon Technology, Itzehoe (ISIT)

Fraunhoferstrasse 1
D-25524 Itzehoe  


IPN - Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik 

Olshausenstraße 62 
D-24118 Kiel

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.